
J
H
E
P
0
8
(
2
0
0
8
)
0
4
7

Published by Institute of Physics Publishing for SISSA

Received: July 14, 2008

Accepted: July 22, 2008

Published: August 13, 2008

A Lorentz invariant formulation of the Yang-Mills

theory with gauge invariant ghost field Lagrangian

A.A. Slavnov

Department of Theoretical Physics, Steklov Mathematical Institute,

Gubkina st. 8, Moscow, Russia

E-mail: slavnov@mi.ras.ru

Abstract: A new formulation of the Yang-Mills theory which allows a manifestly covari-

ant gauge fixing accompanied by a gauge invariant ghost field interaction is proposed. The

gauge condition selects a unique representative in the class of gauge equivalent configura-

tions.

Keywords: Gauge Symmetry, Renormalization Regularization and Renormalons.

mailto:slavnov@mi.ras.ru
http://jhep.sissa.it/stdsearch


J
H
E
P
0
8
(
2
0
0
8
)
0
4
7

Contents

1. Introduction 1

2. The model 2

3. An unambiguous Lorentz covariant gauge with gauge invariant ghost

interaction 6

4. Discussion 9

1. Introduction

Quantization of the Yang-Mills theory involves fixing a gauge. A Lorentz invariant gauge

fixing in non-Abelian theories requires introduction of additional anticommuting scalar

fields, Faddeev-Popov ghosts [1], with non gauge invariant interaction. The ghost field in-

teraction produces ultraviolet divergencies which has to be removed by renormalization of

the ghost fields and the ghost-gluon interaction vertex. Moreover such a gauge fixing does

not choose a unique representative in a class of gauge equivalent configurations. For large

fields Gribov copies appear, which makes questionable using this procedure as a start-

ing point for nonperturbative calculations. Contrary to the Quantum Electrodynamics

(QED), where the quantization procedure does not break the conservation of the current

interacting with the gauge field, in non-Abelian theories this conservation is broken both

by the gauge fixing and by the presence of non-gauge invariant ghost field interaction. The

Ward identities [2 – 4] which express in the quantum case the conservation of electromag-

netic current are replaced in the non-Abelian theories by much more complicated relations,

Slavnov-Taylor (ST) identities [5, 6], including the Green functions of composite operators.

These relations may be interpreted as a consequence of the conservation of a more general

current involving also the ghost fields [7 – 9].

Dynamical ghost fields are absent in the linear gauges, like nA = 0, which makes possi-

ble to obtain in this case relations between the Green functions, similar to the Ward identi-

ties in QED. However linear gauges break explicitly the Lorentz invariance, and their using

is very cumbersome. According to the common wisdom in non-Abelian theories one has to

sacrifice either explicit Lorentz invariance or gauge invariance of the ghost field action.

In this paper I propose a procedure which preserves in the quantum Yang-Mills the-

ory simultaneously the manifest Lorentz invariance and the gauge invariance of the ghost

field Lagrangian. It allows to obtain the relations between the Green functions following

essentially the same procedure as in the Abelian case. The gauge fixing used in the present
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paper is free of Gribov ambiguity and in perturbation theory leads to the same results as

the standard quantization procedure.

The paper is organized as follows. In the next section the model is described and

its equivalence to the standard Yang-Mills theory is demonstrated. In the third section

a new Lorentz invariant gauge condition free of Gribov ambiguity is introduced and the

diagram technique is analyzed. The relations between the Green functions are derived. In

conclusion I discuss the results obtained in this paper and their possible applications.

2. The model

In this section I consider the SU(2) gauge model. Generalization to other compact groups

does not make serious problems.

We start with the usual path integral representation for the S-matrix in the Coulomb

gauge

S =

∫

exp

{

i

∫

[LYM + λa∂iA
a
i ] dx

}

dµ (2.1)

where

LYM = −1

4
F a

µνF
a
µν (2.2)

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gεabcAb

µA
c
ν , a, b, c,= 1, 2, 3 (2.3)

The measure dµ includes differentials of all the fields as well as the Faddeev-Popov determi-

nant detM . This determinant is conveniently presented as the integral over anticommuting

ghost fields

detM =

∫

exp

{

i

∫

c̄∂iDicdx

}

dc̄dc (2.4)

where Di is a covariant derivative.

The effective action in the integral (2.1) is not gauge invariant. Contrary to the

Abelian case the gauge invariance is broken not only by the gauge fixing term but also by

the Faddeev-Popov ghost Lagrangian. To avoid this complication I propose the following

construction.

Let us consider the path integral

S =

∫

exp

{

i

∫

[LYM + (Dµϕ)∗(Dµϕ) − (Dµχ)∗(Dµχ)

+(Dµb)
∗(Dµe) + (Dµe)

∗(Dµ(b)]dx

}

δ(∂iAi)dµ
′ (2.5)

The measure dµ′ differs of dµ by the product of differentials of the scalar fields

(ϕ,ϕ∗, χ, χ∗, b, b∗, e, e∗).

We assume that the scalar fields comprise complex SU(2) doublets, the fields ϕ,χ are

commuting and b, e are anticommuting. The integration goes over the scalar fields with

radiation (Feynman) boundary conditions, which corresponds to considering the matrix
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elements between states which do not include excitations corresponding to the scalar ghost

fields. The gauge fields in the integral (2.5) satisfy the boundary conditions

Atr
i → Atr

i (in,out), t→ ∓∞ (2.6)

where Atr
i are the three dimensionally transversal components of Ai, other fields having vac-

uum boundary conditions. Obviously due to the presence of δ(∂iAi), ∂iAi = 0 at any time.

Performing explicitly the integration over the scalar fields in the eq. (2.5), we get the

factor (|D|2)−2 from the integration over commuting fields ϕ and χ, and the factor (|D|2)2
from the integration over the anticommuting fields b and e. Hence the integral (2.5)

coincides with the integral (2.1), which justifies the using in the l.h.s. of eq. (2.5) the same

symbol S.

Let us make in the integral (2.5) the shift of the integration variables

ϕ→ ϕ+ g−1â, χ→ χ− g−1â, â =

(

0,
a√
2

)

(2.7)

a is a constant parameter. Instead of the eq. (2.5) now we have

S̃ =

∫

exp

{
∫

[LYM + (Dµϕ)∗(Dµϕ) + g−1(Dµϕ)∗(Dµâ)

+g−1(Dµâ)
∗(Dµϕ) + g−1(Dµχ)∗(Dµâ) + g−1(Dµâ

∗)(Dµχ) +

−(Dµχ)∗(Dµχ) + (Dµb)
∗(Dµe) + (Dµe)

∗(Dµb)]dx

}

δ(∂iAi)dµ
′ (2.8)

Although at first sight the transformation (2.7) may influence the asymptotic behavior of

the integration variables and therefore change the value of the integral, in our case it does

not happen. Indeed making in the integral (2.8) the transformation

ϕ(x) = ϕ′(x) − g−1

∫

D−2(x, y)(D2â)(y)dy

χ(x) = χ′(x) + g−1

∫

D−2(x, y)(D2â)(y)dy (2.9)

which is a legitimate change of variables as D2â is decreasing fast at |t| → ∞, we are

coming back to the eq. (2.5). (Note that it is impossible to integrate in the eq. (2.9) by

parts, as â is a constant spinor.)

Notice that the choice of the negative sign of the kinetic term for the χ field is crucial for

our construction. Due to the different signs of kinetic terms for ϕ and χ fields the shift (2.7)

does not generate a mass term for the Yang-Mills field and preserves the equivalence of the

modified theory to the original Yang-Mills model.

The action in the exponent (2.8) is invariant with respect to ”shifted” gauge

transformations

δAa
µ = ∂µη

a − gεabcAb
µη

c

δϕ0 =
g

2
ϕaηa
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δϕa = −aη
a

2
− g

2
εabcϕbηc − g

2
ϕ0ηa

δχa =
aηa

2
− g

2
εabcχbηc − g

2
χ0ηa

δχ0 =
g

2
χaηa

δba = −g
2
εadcbdηc − g

2
b0ηa

δb0 =
g

2
baηa

δea = −g
2
εadcedηc

δe0 =
g

2
eaηa, (2.10)

where we introduced the representations of the scalar fields in terms of Hermitian

components, e.g.

ϕ =

(

iϕ1 + ϕ2√
2

,
ϕ0 − iϕ3√

2

)

(2.11)

This action is also invariant with respect to the supersymmetry transformations

δϕ(x) = ǫb(x)

δχ(x) = −ǫb(x)
δe(x) = ǫ(ϕ(x) + χ(x))

δb = 0 (2.12)

where ǫ is an anticommuting constant parameter. This invariance is closely related to the

fact that the integral (2.5) in the sector which does not contain excitations corresponding

to the scalar fields coincides with the Yang-Mills scattering matrix (see [10 – 12]).

Our proof of equivalence of representations (2.5) and (2.8) did not take into account

a necessity of renormalization. One can see that to remove ultraviolet infinities generated

in the perturbative expansion of the integral (2.8) mass renormalization of the type

δmg(e
∗b+ b∗e), δmϕϕ

∗ϕ, δmχχ
∗χ (2.13)

may be needed, as well as new four point vertices

γ(e∗b+ b∗e)2, µ(ϕ∗ϕ)2, ̺(χ∗χ)2 (2.14)

A possible counterterm structures not present in the Lagrangian (2.8) and compatible with

the symmetries (2.10), (2.12) are

A[b∗e+ e∗b+ ϕ∗ϕ− χ∗χ+ a(ϕ0 + χ0)]

B[b∗e+ e∗b+ ϕ∗ϕ− χ∗χ+ a(ϕ0 + χ0)]
2 (2.15)

where A ∼ g2, B ∼ g4. Note that the terms linear in the fields ϕ,χ are present in the

eq. (2.15), corresponding to the necessity of the tadpole renormalization. In general any

counterterms compatible with the symmetries of the theory may arise. In the presence of
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such terms in the exponent of the integral (2.8) one cannot any more to prove the equiv-

alence of this expression to the original representation (2.5) for the Yang-Mills scattering

matrix by simple shift of integration variables. Nevertheless the invariance of the action in

the exponent (2.8) with respect to the transformations (2.10), (2.12) provides the unitar-

ity of the S-matrix (2.8) in the physical subspace which includes only transversal spin one

excitations. The proof goes in analogy with the construction given in the papers ([10 – 12]).

The invariance of the action with respect to the supersymmetry transformations (2.12)

leads to existence of the conserved charge Q and one can separate the physical subspace

by requiring its annihilation by the charge Q. For asymptotic states we shall have

Q0|ψ〉asph = 0 (2.16)

where Q0 is the asymptotic conserved charge. The asymptotic charges has a form

Q0 ∼
∫

[∂0b
α(ϕ+ χ)α − ∂0(ϕ+ χ)αbα]d3x (2.17)

I recall that we are working in perturbation theory and assume that the interaction is

asymptotically turned off. That means all the terms ∼ g do not contribute to the asymp-

totic charge. Being written in terms of creation and annihilation operators the asymptotic

charge looks as follows

Q0 ∼
∫

[aα+
b (aα−

χ + aα−
ϕ ) + (aα+

χ + aα+
ϕ )aα−

b ]d3k (2.18)

where the operators a± satisfy the following (anti)commutation relations

aα−
b (k)aβ+

e (k′) + aβ+
e (k′)aα−

b (k) = δαβδ(k − k′)

aα−
e (k)aβ+

b (k′) + a
β+
b (k′)aα−

e (k) = δαβδ(k − k′) (2.19)

aα−
ϕ (k)aβ+

ϕ (k′) − aβ+
ϕ (k′)aα−

ϕ (k) = δαβδ(k − k′)

aα−
χ (k)aβ+

χ (k′) − aβ+
χ (k′)aα−

χ (k) = −δαβδ(k − k′) (2.20)

The operator Q0 is obviously nilpotent as the operators a+
b , a

−

b are anticommuting and

the operators (a−χ + a−ϕ ), (a+
χ + a+

ϕ ) are mutually commuting.

Nonnegativity of the subspace annihilated by the operator Q0 may be proven in the

usual way (see [13]). Introducing the number operator for unphysical scalar modes

N̂ =

∫

{a+
ϕ (k)a−ϕ (k) − a+

χ (k)a−χ ((k) + a+
b (k)a−e (k) + a+

e (k)a−b (k)}d3k (2.21)

we see that this operator may be presented as the anticommutator

N̂ = [Q0,K0]+ (2.22)

where

K0 =

∫

{a+
e (k)(a−χ (k) − a−ϕ (k)) + (a+

χ (k) − a+
ϕ (k))a−e (k)}d3k (2.23)
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Applying the number operator (2.21) to an arbitrary vector we get

N̂ |ψ〉 = N |ψ〉 (2.24)

if N 6= 0 it follows that

N |ψ〉 = Q0K0|ψ〉 +K0Q0|ψ〉 (2.25)

and any vector annihilated by Q0 has a form

|ψ̃〉 = |ψ〉A,c +Q0|ω〉 (2.26)

where |ψ〉A,c does not contain the excitations corresponding to the ghost fields ϕ,χ, b, e.

Recollecting that this vector contains only three dimensionally transversal excitations of

the Yang-Mills field we conclude that

|ψ〉asph = |ψ〉tr + |N〉 (2.27)

Here the vector |ψ〉tr depends only on the three dimensionally transversal Yang-Mills field

excitations and |N〉 is a zero norm vector orthogonal to |ψ〉tr. Factorizing this subspace with

respect to the vectors |N〉 we see that the S-matrix (2.8) with the counterterms respecting

the gauge invariance (2.10) and supersymmetry (2.12) is unitary in the subspace which

contains only three dimensionally transversal excitations of the Yang-Mills field.

3. An unambiguous Lorentz covariant gauge with gauge invariant ghost

interaction

Up to now we considered the Yang-Mills theory in the Coulomb gauge and our reformula-

tion did not give any advantages in comparison with the standard one. In particular non

gauge invariant interaction of the Faddeev-Popov ghosts was present. However we may

pass in the integral (2.8) to some other gauge and get rid off the non gauge invariant ghost

field Lagrangian. The new gauge condition avoids the problem of existence of Gribov

copies for large fields.

We consider the gauge

ϕa − χa = 0 (3.1)

Obviously this condition selects a unique representative in the class of gauge equivalent

configurations.

To pass to this gauge we shall use the standard Faddeev-Popov trick, multiplying the

integral (2.8) by ”one”

∆
∏

a

∫

δ(ϕΩ − χΩ)adΩ (3.2)

At the surface ϕa − χa = 0 the gauge invariant functional ∆ is equal to

∆−1 =
∏

x

(

a+
g

2
(ϕ0 − χ0)

)−3

(3.3)
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Hence in the gauge (3.1) the S-matrix generating functional may be written as follows

S =

∫

exp

{

i

∫

[LYM + (Dµϕ)∗(Dµϕ) − (Dµχ)∗(Dµχ)

+g−1[(Dµϕ)∗+(Dµχ)∗](Dµâ)+g
−1(Dµâ)

∗(Dµϕ+Dµχ)+(Dµb)
∗(Dµe)

+(Dµe)
∗(Dµb) + λa(ϕa − χa)]dx

}

∆dµ̃ (3.4)

The measure dµ̃ is the product of all the fields differentials and does not include any

dynamical ghost determinants. All the terms in the exponent except for the gauge fixing

term
∫

λa(ϕa − χa)dx are invariant with respect to the gauge transformations (2.10).

In the same way one can introduce a nonsingular α gauge, changing in the eq. (3.2)

δ(ϕΩ − χΩ) by δ[(ϕΩ − χΩ)a − ca(x)] with arbitrary function ca(x) and then integrating

over ca with the weight exp{ i
2α

∫

c2(x)dx}. The ghost structure of the effective Lagrangian

remains the same and the condition ϕa−χa = ca also selects a unique representative in the

class of the gauge equivalent configurations. However the effective Lagrangian in this gauge

is more complicated as it contains vertices including the field ϕa − χa which disappear in

the gauge used in this paper. In α = 0 gauge which we are using, the part of the effective

Lagrangian which describes the interaction of bosonic scalars with the Yang-Mills field

looks as follows

L1 = ∂µϕ
0+∂µϕ

0− + a∂µϕ
a+Aa+

µ +
g2

8
A2

µ(ϕ0+ϕ0−)

+
ag2

4
A2

µϕ
0+ − g

2
∂µϕ

0−ϕa+Aa
µ +

g

2
ϕ0−∂µϕ

a+Aa
µ (3.5)

where we used natural notations ϕα± = ϕα ± χα.

The integral (3.4) includes a local measure, which may be formally presented as an

addition to the action having a form

δA =

∫

δ4(0) ln

(

1 +
g(ϕ0 − χ0)3

2a

)

d4x (3.6)

This term compensates some ultraviolet divergencies present in the diagrams generated by

the expansion of the integral (3.4). We shall not analyze this cancelation in details and

assume that this integral is calculated by using a regularization similar to the dimensional

one, that is we omit all counterterms proportional to δ(0) or Dc(0).

The free action determining the propagators for the perturbative expansion of the

integral (3.4) looks as follows

A0 =

∫
[

− 1

4
(∂µAν − ∂νAµ)2 +

1

2
∂µϕ

0∂µϕ
0

−1

2
∂µχ

0∂µχ
0 + a∂µϕ

aAa
µ +

1

2
∂µb

α∂µe
α

]

dx (3.7)

where we used the gauge condition ϕa = χa.
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One sees that the propagators ϕ0, ϕ0;χ0, χ0; bα, eβ ;Atr
µ , A

tr
ν have a standard form and

for large k decrease as k−2, whereas the mixed propagator ϕa, ∂µA
a
µ is a constant ∼ a−1.

The free field Aµ satisfies the condition ∂µA
a
µ = 0.

Account of the interaction leads to modification of this condition. Variation of the La-

grangian (3.5) with respect to ϕa leads to the following condition on the interacting field Aµ

(

a+
g

2
(ϕ0 − χ0)

)

∂µA
a
µ = −gAa

µ(∂µϕ
0 − ∂µχ

0) (3.8)

Renormalization of our model is not quite trivial, because one of the propagators

determined by the free Lagrangian (3.7) does not decrease at infinity sufficiently fast:

ϕa, Ab
µ ∼ k−1. One may expect that it will lead to nonrenormalizability. However the fields

ϕa with slowly decreasing propagators are always accompanied by the fields ϕ0−,which have

a nonzero contraction only with ϕ0+. The field ϕ0+ enters a superrenormalizable vertex

A2
µϕ

0+. Contrary to nonrenormalizable models, in our case the degree of divergency of

arbitrary diagram is limited. In particulat the degree of divergency of any diagram with

only Yang-Mills field external lines is the same as in the standard formulation.

Now we shall derive the relations between the Green functions, which follow from the

gauge invariance of the effective action in the eq. (3.4) and replace the usual ST identities

in the present case.

We consider the Green function generating functional given by the integral

Z =

∫

exp

{

i

∫

[L̃(Aµ, ϕ, χ, b, e) + λa(ϕa − χa)

+Ja
µA

a
µ+ζα(ϕα−χα)+ξα(ϕα+χα)+κ∗b+b∗κ+σ∗e+e∗σ]dx

}

dµ (3.9)

where L̃ is the gauge invariant Lagrangian standing in the exponent of the integral (3.4),

and Jµ, ζ, ξ, κ, σ are external sources. Let us make the change of variables given by the

eq. (2.10). Due to the gauge invariance of the Lagrangian L̃ the only terms which change

under this transformation are the source terms and the gauge fixing term. Using the fact

that the integral(3.9) does not change under this transformation we get

∫

exp

{

i

∫

[L̃+ λa(ϕa − χa) + s.t.]dx{λa(y)

[

a+
g

2
(ϕ0(y) − χ0(y))

]

+i∂µJ
a
µ(y) + ζa(y)

[

a+
g

2

(

ϕ0(y) − χ0(y)

)]

+ · · ·
}

dµ = 0 (3.10)

Here s.t. stands for the source terms and . . . denote the variation of all remaining source

terms. It is convenient to make further redefinitions:

λa
(

a+
g

2
(ϕ0 − χ0)

)

= λ′a (3.11)

ϕa − χa = (ϕa − χa)′
(

a+
g

2
(ϕ0 − χ0)

)

(3.12)
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After such redefinition the eq. (3.10) acquires the form
∫

exp

{

i

∫
[

L̃(Aµ, (ϕ
a + χa), (ϕa − χa)

(

a+
g

2
(ϕ0 − χ0), ϕ0, χ0, bα, eα

)

+λa(ϕa − χa) + Ja
µA

a
µ + ζa(ϕa − χa)

(

a+
g

2
(ϕ0 − χ0)

)

+ · · ·
]

dx

}

{

λa(y) + ∂µJ
a
µ(y) + ζa(y)

(

a+
g

2
(ϕ0(y) − χ0(y)

)

+ · · ·
}

dµ = 0 (3.13)

Here . . . denote all remaining source terms and their variations under transformation (2.10).

This equation replaces the standard system of ST identities. In particular the simplest

identities, which follow from the eq. (3.13) are

〈λa(x)Ab
µ(y)〉 = ∂µδ(x− y)δab (3.14)

〈λa(x)(ϕ+ χ)b〉 = 0 (3.15)

We postpone a detailed analysis of these relations as well as consideration of the renormal-

ization procedure to a separate publication.

As follows from our previous discussion the S-matrix defined by the eq. (3.4) coincides

with the Coulomb gauge scattering matrix given by the eq. (2.1). The eq. (2.1) strictly

speaking defines a unique S-matrix for the Yang-Mills theory only in perturbation theory.

Although the eq. (3.4) formally makes sense beyond the perturbation theory, the proof of

unitarity relies on its equality to the Coulomb gauge S-matrix. At present I do not know

an independent proof of the unitarity of the S-matrix (3.4).

4. Discussion

The main goal of this paper was to show that Yang-Mils theory allows a manifestly Lorentz

invariant formulation with gauge invariant ghost fields interaction. In this formulation

Yang-Mills theory demonstrates a remarkable similarity to QED. In particular as in QED

the gauge condition (3.4) does not lead to an ambiguity in the choice of representative in

the class of gauge equivalent configurations. The relations between the Green functions

which replace in this case the standard ST-identities also may be derived in a way similar to

QED. Gauge invariance of the effective action simplifies the construction of invariant reg-

ularization and may be helpful for invariant regularization of non-Abelian supersymmetric

models. Finally this construction may be useful for a nonperturbative analysis of the Green

functions on the basis of Dyson-Schwinger equations having in mind that the gauge condi-

tion (3.1) does not introduce Gribov ambiguity. This problem requires further investigation.
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